Images of Physically Irreducible Representations of the $\mathbf{2 3 0}$ Space Groups

By Harold T. Stokes, Dorian M. Hatch and Jai Sam Kim
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA

(Received 12 November 1985; accepted 18 June 1986)

Abstract

Among the 230 crystallographic space groups, we find there are more than 4000 physically irreducible representations (irreps) that arise from \mathbf{k} points of symmetry. These irreps map the space-group elements onto only 132 different images. These images are listed, and their group-subgroup relations are given. Images which are active in the Landau theory of continuous phase transitions are also indicated.

Group-theoretical methods provide a powerful tool in solid-state physics. The irreducible representations (irreps) of space groups are of central importance in these methods. We recently (Stokes \& Hatch, 1984, 1985; Hatch \& Stokes, 1984, 1985a, 1985b, 1985c; Kim, Hatch \& Stokes, 1986) used group-theoretical methods in the Landau theory (Landau \& Lifshitz, 1980) of continuous phase transitions in solids. In this theory, a phase transition is driven by an irrep of the parent space group. We obtained a listing of all possible symmetry changes in such phase transitions to commensurate structures. To do this, we needed the irreps of the space groups.

Each irrep consists of a mapping of space-group elements onto a set of matrices called the image of the irrep. Theories which describe physically realizable processes usually require these matrices to be real. If an image cannot be written in real form (i.e. it is not equivalent to a set of real matrices), a physically irreducible representation can be formed from the direct sum of each matrix and its complex conjugate. The resulting matrices are equivalent to a set of real matrices. In this paper, irrep refers to physically irreducible representations.

Each irrep of a space group is associated with some \mathbf{k} vector in the first Brillouin zone. We have considered all of the irreps which arise from \mathbf{k} points of symmetry (points \mathbf{k} in the first Brillouin zone which have higher symmetry than any other point in the neighborhood of \mathbf{k}; see Bradley \& Cracknell, 1972). There are more than 4000 of these irreps among the 230 three-dimensional space groups.

We sorted out the images of these irreps and found that there are only 132 different images. We list these
in Table 1. We introduce here our labeling of these images ($A 1 a, A 2 a, B 3 a$, etc.; this labeling is in principle similar to that in Gufan \& Chechin, 1980) and also give the label used by Tolédano \& Tolédano (1980) and by Mozrzymas \& Solecki (1975). We have selected an irrep as an example of each image. Each irrep is identified by a space-group number, a spacegroup symbol, and an irrep label which follows the convention of Miller \& Love (1967) (see also Cracknell, Davies, Miller \& Love, 1979). If the irrep is not real, a direct sum is indicated, showing the physically irreducible representation. A physically irreducible representation which is formed from a complex irrep which is equivalent to its own complex conjugate is indicated by, for example, $P_{2} \oplus\left(P_{2}\right)^{*}$. A physically irreducible representation which is formed from a complex irrep which is equivalent to the complex conjugate of another irrep is indicated by, for example, $\Gamma_{2} \oplus \Gamma_{3}$, where Γ_{3} is equivalent to the complex conjugate of Γ_{2}.

Although we use the irrep labelling of Miller \& Love (1967), the matrices we choose for the images are different from their choice in many cases (but still equivalent to their choice). An explicit listing of our generating matrices of these images will be given in a later publication. We have chosen matrices which give rise to the same set of invariant fourth-degree polynomials as those given by Tolédano \& Tolédano (1980) and Tolédano, Michel, Tolédano \& Brezin (1985).

We show in Figs 1-6 the group-subgroup relations among the images. Solid lines indicate an actual group-subgroup relation for the matrices we have chosen for the images. Dashed lines indicate that an image is only equivalent to a subgroup of another image but not an actual subgroup for the matrices we have chosen. A different choice of matrices for the images could change some dashed lines to solid lines and some solid lines to dashed lines on these figures.

In Landau theory, an irrep may drive a continuous phase transition only if it satisfies two conditions, called the Landau \& Lifshitz conditions (Landau \& Lifshitz, 1980). These irreps are said to be active. Images of the active irreps are also said to be active, even though irreps which are not active may also have that same image. In Table 1, we indicate which
images are active. For the active images, an example of an active irrep is given.

Our results for active images disagree with Tolédano \& Tolédano (1980). They missed five fourdimensional active images ($D 32 e, D 64 b, D 64 d$, $D 72 a$, and $D 144 a$) and a six-dimensional active

Fig. 1. The group-subgroup relations for the one-, two- and threedimensional images.

Fig. 2. The group-subgroup relations for some of the fourdimensional images.

Fig. 3. The group-subgroup relations for the remaining fourdimensional images.
image ($E 96 k$). (More details about $E 96 k$ can be found in Hatch, Stokes, Kim \& Felix, 1986, and in Kim, Hatch \& Stokes, 1986.) Also, we do not find the eight-dimensional image labeled M_{5} by Tolédano \& Tolédano. (None of the irreps of $\mathrm{Pb}_{3} m c$ are eightdimensional.)

Fig. 4. The group-subgroup relations for the six-dimensional images.

Fig. 5. The group-subgroup relations for the eight-dimensional images.

Fig. 6. The group-subgroup relations for the twelve- and sixteendimensional images.

Table 1. The images of the 230 space groups

We give our image label, the dimension (dim.) of the matrices, the order of the image (number of distinct matrices), an example of an irrep with that image, whether or not the image is active, and other labels used for these images in Tolédano \& Tolédano (1980) or Mozrzymas \& Solecki (1975). If the image is active, the irrep shown is an example of an active irrep.

Image	Dim.	Order	Example irrep	Active	Other label	Image	Dim.	Order	Example irrep	Active	Other label
A1a	1	1	${ }_{1} P_{1} \Gamma_{1}$	no	C_{1}	E96e	6	96	$197123{ }_{1}$	no	
A2a	1	2	$2 P_{1}^{1} \Gamma_{1}^{-}$	yes	C_{2}	E96f	6	96	$207 \mathrm{P432} \mathrm{M}_{5}$	no	
B3a	2	3	143 P3 $\Gamma_{2} \oplus \Gamma_{3}$	no	C_{3}	E96g	6	96	198P2, $3 X_{1}$	no	
B4a	2	4	$18 P 21_{1} 2 S_{1} \oplus S_{2}$	yes	C_{4}	E96h	6	96	$212 P 4_{3} 32 M_{1} \oplus M_{4}$	no	
B6a	2	6	$149 P 312 \Gamma_{3}{ }^{-}$	no	C_{30}	E96i	6	96	$212 \mathrm{P4}_{3} 32 \mathrm{M}_{5}$	no	
$B 6 b$ $B 8 a$	2	6	$147 P \overline{3} \Gamma_{2}^{-} \oplus \Gamma_{3}^{-}$	yes	C_{6}	E96j	6	96	19912, $3 \mathrm{~N}_{i}$	no	
B8a $B 8$	2	8	${ }_{75 P 4}{ }^{\text {76P4 }}{ }_{1}{ }_{1}$	yes	$\mathrm{C}_{4 v}$	E96k	6	96	$212 \mathrm{P4}_{3} 32 \mathrm{M}_{2} \oplus \mathrm{M}_{3}$	yes	
$B 8 b$ $B 12 a$	2	8 12	$76 P 4_{1} A_{1} \oplus A_{3}$ $162 P \frac{1 m}{1} \Gamma_{3}^{-}$	no	C_{8}	E192a	6	192	$193 \mathrm{~Pb}_{3} / \mathrm{mcm} L_{1}$	no	
$B 12 b$	2	12	$162 \mathrm{P} 1 \mathrm{~m}{ }_{3}$	yes	${ }^{\text {c }}$ 6	$E 192 b$	6	192	$218 \mathrm{P} 43 n \mathrm{X}_{5}$	no	
B16a	2	16	$\mathrm{l}^{191 P 4,22} \mathrm{~A}_{1}$	yes	C_{12}	E192c	6	192	$204 \mathrm{Im} 3 \mathrm{~N}_{1}^{-}$	yes	L_{8}
B24a	2	24	$211 / 432 P_{2}$	yes	$C_{12 v}$	E192e	6	192	$211 / 432 N_{1}$ $211 / 432 N_{2}$	no	
C12a	3	12	$195 \mathrm{P}_{23} \Gamma_{4}$	no	T^{120}	E192f	6	192	$215 P \overline{4} 3 \mathrm{~m} \mathrm{X}_{5}$	yes	L_{6}
C24a	3	24	$200 \mathrm{Pm}^{3} \Gamma_{4}^{-}$	yes	T_{h}	E192g	6	192	$205 P a 3 X$	no	L_{7}
C24b	3	24	207 P432 $\Gamma_{\text {S }}$	no	τ_{d}	E192h	6 6	192	${ }_{212 P 4} \mathrm{P}_{3} 32 \mathrm{X}_{1}$	no	
C24c	3	24	$207 \mathrm{P}^{2} 32 \mathrm{M}_{2}$	yes	${ }^{\text {O }}$	E192i	6	192	$212 P_{3}$ $21414,32 N_{1}$	no	
C48a	3	48	$221{\mathrm{Pm} 3 \mathrm{~m} \Gamma_{4}^{-}}^{-}$	yes	O_{h}	E192j	6	192	214I4, $32 \mathrm{~N} \mathrm{~N}_{2}$	yes	L_{5}
D8a	4	8	$61 \mathrm{Pbca} R_{1}^{+} \oplus\left(R_{1}^{+}\right)^{*}$	yes	$13 \cdot 1$	E384a	6	384	$223 P \operatorname{man} \mathrm{X}_{1}$	no	L_{5}
D12a	4	12	$218 P \overline{4} 3 n R_{3} \oplus\left(R_{3}\right)^{*}$	yes	$21 \cdot 1$	E384b	6	384	$222 \operatorname{Pn} 3 n X_{1}$	no	
D16a	4	16	92P41 $212 A_{1} \oplus A_{2}$	no	$31 \cdot 1$	E384c	6	384	$224 \mathrm{Pn} 3 \mathrm{mX} \mathrm{X}_{3}$	yes	L_{4}
D16b	4	16	$76 P 4_{1} R_{1} \oplus R_{2}{ }_{2}$	no	29.1	E384d	6	384	$196 \mathrm{~F} 23 \mathrm{~W}_{1}$	no	L_{4}
D16c	4	16	$64 \mathrm{Cmca} R_{1}^{+} \oplus \mathrm{R}_{2}^{+}$	yes	$26 \cdot 1$	E768a	6	768	$202 \mathrm{Fm} 3 \mathrm{~W}_{1}$	no	
D18a	4	18	${ }_{150 P 321 ~}^{\text {K }}$ (${ }_{3} \oplus\left(K_{3}\right)^{*}$	no	$33 \cdot 1$	E768b	6	768	$216 F \overline{4} 3 \mathrm{~m} W_{1}$	yes	L_{3}
D24a D24b	4	24	${ }_{205 P a 3} R_{1}^{+} \oplus R_{3}^{+}{ }^{+}$	yes	$49 \cdot 2$	E768c	6	768	$209 \mathrm{~F} 432 \mathrm{~W}_{1}$	yes	L_{2}
D24c	4	24	205Pa3 $R_{2}^{+} \oplus\left(R_{2}^{+}\right)^{*}$ $217 / \overline{4} 3 \mathrm{mP} P_{3} \oplus\left(P_{3}\right)^{*}$	yes	$49 \cdot 1$ 44.1	E1536a	6	1536	$225 \mathrm{Fm} 3 \mathrm{~m} W_{1}$	yes	L_{1}
D24d	4	24	$217 / 43 m P_{3} \oplus\left(P_{3}\right)^{+}$ $204 \mathrm{Im} 3 \mathrm{P}_{2} \oplus \mathrm{P}_{3}$	yes	$44 \cdot 1$ $42 \cdot 1$	F32a	8	32	$110 / 4_{1} \mathrm{~cd} \mathrm{P}_{1} \oplus\left(P_{1}\right)^{*}$	no	
D24e	4	24	$222 P n 3 n R_{2} \oplus R_{3}$	yes	$42 \cdot 1$	F32b $F 64 a$	8	32 64	$73 \mathrm{Ibca} W_{1} \oplus\left(W_{1}\right)^{*}$ $108 \mathrm{I} / \mathrm{cm}{ }^{*} \oplus \mathrm{~N}^{\text {a }}$	no	
D32a	4	32	$80 I 4_{1} N_{1}$	yes	59.1	F64a	8	64	$108 \mathrm{I} 4 \mathrm{~cm} N_{1} \oplus \mathrm{~N}_{2}$ $110 \mathrm{I}, \mathrm{cd} \mathrm{N}_{1} \oplus N_{2}$	no	
D32b	4	32	$43 \mathrm{Fdd} 2 L_{1}$	yes	58.C1	$F 64$ c	8	64	1014_{1} cd $N_{1} \oplus N_{2}$ $142 I 4_{1} /$ acd $P_{1} \oplus P_{2}$	no	
D32c	4	32	22F222 L_{1}	yes	$56 \cdot 1$	F72a	8	72	$184 \mathrm{P} 6 \mathrm{ccc} \mathrm{H}_{3} \oplus\left(\mathrm{H}_{3}\right)^{*}$	no	
D32d D32e	4	32	$91 P 4_{1} 22 R_{1}$	no	$57 \cdot 1$	$F 72 b$	8	72	$165 P \overline{3} c 1 H_{3} \oplus\left(\mathrm{H}_{3}\right)^{*}$	no	
D32e D36a	4	32	$92 P 4{ }_{1} 2_{1} 2 R_{1} \oplus R_{3}$	yes	$52 \cdot 1$	F96a	8	96	$202 \mathrm{Fm} 3 \mathrm{~L}_{2}^{+} \oplus L_{3}^{+}$	yes	M_{4}
D36a	4	36	$159 \mathrm{P} 31 \mathrm{cH} \mathrm{H}_{3} \oplus\left(\mathrm{H}_{3}\right)^{*}$	no	$62 \cdot 1$	F96b	8	96	$2201 \overline{4} 3 d P_{3} \oplus\left(P_{3}\right)^{*}$	no	
D36 b D36	4	36	$150 \mathrm{P} 321 \mathrm{H}_{3} \oplus\left(\mathrm{H}_{3}\right)^{*}$	no	$63 \cdot 1$	F96c	8	96	$206 \mathrm{Ia} 3 \mathrm{P}_{1} \oplus \mathrm{P}_{3}{ }^{3}$	no	
D36c D48a	4	36 48	$162 P \overline{3} 1 m K_{3}$ $212 P 432{ }^{\text {a }}$	no	$64 \cdot 1$ 77.2	F96d	8	96	$206 \mathrm{Ia3} P_{2} \oplus\left(P_{2}\right)^{*}$	no	
D48a	4	48 48	$212 P 4_{3} 32 R_{3}$ $199 I 2,3 P_{1} \oplus(P) *$	no	$77 \cdot 2$	F128a	8	128	$140 \mathrm{I} 4 / \mathrm{mcm} \mathrm{N}_{1}$	no	
D48c	4	48	$19911_{1} 3 P_{1} \oplus\left(P_{1}\right)^{*}$ $212 P 4_{3} 32 R_{1} \oplus R_{2}$	no	$77 \cdot 1$	F128b	8	128	$142 I 4_{1} /$ acd N_{1}	no	
D48d	4	48	$19912_{1} 3 P_{2} \oplus\left(P_{2}\right)^{*}$	no	$76 \cdot 1$	F144a	8	144	$192 P 6 / m c c$ $216 F \overline{4} 3 m L_{1} \oplus H_{2}$	no	
D48e	4	48	$299 \mathrm{Im} 3 \mathrm{~m} \mathrm{P}_{3}$	yes	$74 \cdot 1$	F192b	8	192	$\stackrel{203 F d 3}{ } L_{2}^{+} \oplus L_{3}^{+}$	yes	$\begin{aligned} & M_{2} \\ & M_{3} \end{aligned}$
D64a	4	64	$88 / 4_{1} / a N_{1}^{+}$	yes	80.01	F192c	8	192	$210 \mathrm{F4}, 32 L_{3}$	no	
D64b	4	64	122I42d N_{1}	yes	81.01	F192d	8	192	$219 F \overline{4} 3 c L_{1} \oplus L_{2}$	no	
D64c	4	64	70 Fddd L_{t}^{+}	yes	82.01	F192e	8	192	$230 \mathrm{Ia3d} \mathrm{P}_{3}$	no	
D72a	4	64 72	$98 \mathrm{I} 4_{1} 22 \mathrm{~N}_{1}$ $186 \mathrm{P} 6_{3} \mathrm{mc} \mathrm{H}_{3}$	yes	$83 \cdot 1$ 91.1	F192f	8	192	$230 \mathrm{Ia3d} \mathrm{P}_{1} \oplus \mathrm{P}_{2}$	no	
D72b	4	72		yes yes	$91 \cdot 1$ $85 \cdot 1$	F384a	8	384	$227 \mathrm{Fd} 3 \mathrm{~m} \mathrm{~L}_{3}^{+}$	yes	M_{1}
D72c	4	72	$163 P \overline{3} 1 \mathrm{cH}_{3}$	no	$92 \cdot 1$	F384b	8	384 384	$226 \mathrm{Fm} 3 \mathrm{c} L_{3}$ $228 \mathrm{Fd} 3 \mathrm{~L} L_{3}$	no	
D72d	4	72	$162 \mathrm{P} \overline{3} 1 \mathrm{mH}_{3}$	no	$88 \cdot 1$	G96a	12	384 96	$205 P a 3 M_{1} \oplus M_{2}$	no	
D96a	4	96	$196 F 23 L_{1}{ }^{3}$	yes	$95 \cdot 1$	G192a	12	192	$220 I \overline{4} 3 d N_{1}$	no	
D96b $D 96 c$	4	96	214I4, $32 P_{1}$	no		G192b	12	192	$2061 a 3 N_{1}$	no	
D96c D96d	4	96	$2141432 P_{2}$ $220143 d P_{1}(P) *$	no		G384a	12	384	$222 \mathrm{Pn3n} \mathrm{X}_{3} \oplus \mathrm{X}_{4}$	no	
D96d D128a	4	96 128	220I43d $P_{1} \oplus\left(P_{1}\right)^{*}$ $141 / 44 /$ amd N^{+}	yes	98.1 101.01	G384b	12	384	$230 \mathrm{Ia3d} \mathrm{~N}_{1}$	no	
D144a	4	128	$141 / 4_{1} /$ amd N_{1}^{+} $194 \mathrm{P} 6_{3} / \mathrm{mmc} \mathrm{H}_{1}$	yes	101.01 $104 \cdot 1$	G384c	12	384	$230 \mathrm{Ia3d} \mathrm{~N}_{2}$	no	
D192a	4	192	$203 \mathrm{Fd} 3 \mathrm{~L}_{1}^{+}{ }^{\text {a }}$	yes	$104 \cdot 1$ 108.01	G768a G768b	12	768 768	$209 F 432 W_{3} \oplus W_{4}$ $219 F 43 c W_{1} \oplus W_{2}$	no	
D192b	4	192	209 F432 L_{1}	yes	109.01	G768c	12	768	${ }_{203 F d} 219 W_{1} \oplus W_{2}$	no	
D192c	4	192	210F4, $32 L_{1}$	yes	$110 \cdot 1$	G768d	12	768	210F4,32 W ${ }_{1}$	no	
D384a	4	384	$227 \mathrm{Fd} 3 \mathrm{~m} L_{1}^{+}$	yes	115.01	G1536a	12	1536	$225 \mathrm{Fm} 3 \mathrm{~m} \mathrm{~W}_{5}$	no	
E48a	6	48	$197123 P_{4} \oplus\left(P_{4}\right)^{*}$	no		G1536b	12	1536	$226 \mathrm{Fm} 3 \mathrm{c} \mathrm{W}_{1} \oplus \mathrm{~W}_{2}$	no	
E48b	6	48	$218 P \overline{4} 3 n X_{1} \oplus X_{2}$	yes	L_{10}	G1536c	12	1536	$226 \mathrm{Fm} 3 \mathrm{c} \mathrm{W}_{5}$	no	
$E 48 \mathrm{c}$ $E 96 a$	6	48	$198 P 2,3 M_{1} \oplus M_{2}$	no		G1536d	12	1536	$227 \mathrm{Fd} 3 \mathrm{~m} \mathrm{~W}_{1}$	no	
E96a	6	96	${ }_{176 \mathrm{~Pb}_{3} / \mathrm{mL}}^{1} 1$	no		H192a	16	192	$219 F \overline{4} 3 c L_{3} \oplus\left(L_{3}\right)^{*}$	no	
E96b	6	96	$178 \mathrm{P}_{6} 22 L_{1}$ $2171 \mathrm{~m}_{1} \mathrm{~m} P_{4} \oplus\left(P_{4}\right)^{*}$	no		H384a	16	384	$226 F m 3 c L_{1} \oplus L_{2}$	no	
	6	96	$217143 m P_{4} \oplus\left(P_{4}\right)^{*}$	no		H384b	16	384	$228 \mathrm{Fd} 3 \mathrm{c} L_{1} \oplus L_{2}$	no	
E96d	6	96	$223 \mathrm{Pm} 3 \mathrm{n} \mathrm{X}_{3}$	yes	L_{9}	K1536a	24	1536	$228 \mathrm{Fd} 3 \mathrm{c} W_{1} \oplus \mathrm{~W}_{2}$	no	

References

Bradley, C. J. \& Cracknell, A. P. (1972). The Mathematical Theory of Symmetry in Solids, pp. 95-119. Oxford: Clarendon Press.
Cracknell, A. P., Davies, D. L., Miller, S. C. \& Love, W. F. (1979). Kronecker Product Tables, Vol. 1. New York: Plenum. Gufan, Yu. M. \& Chechin, G. M. (1980). Sov. Phys. Crystallogr. 25, 261-265.

Нatch, D. M. \& Stokes, H. T. (1984). Phys. Rev. B, 30, $5156-$ 5166.

Натсн, D. M. \& Stokes, H. T. (1985a). Phys. Rev. B, 31, 2908-2912.
Нatch, D. M. \& Stokes, H. T. (1985b). Phys. Status Solidi B, 130, 79-86.
Нatch, D. M. \& Stokes, H. T. (1985c). Phys. Rev. B, 31, 43504354.

Hatch, D. M., Stokes, H. T., Kim, J. S. \& Felix, J. W. (1986). Phys. Rev. B, 33, 6196.
Kim, J. S., Hatch, D. M. \& Stokes, H. T. (1986). Phys. Rev. B, 33, 1774.
Landau, L. D. \& Lifshitz, E. M. (1980). Statistical Physics, 3rd ed., Part 1. New York: Pergamon.
Miller, S. C. \& Love, W. F. (1967). Tables of Irreducible Representations of Space Groups and Co-Representations of Magnetic Space Groups. Boulder: Pruett.

Mozrzymas, J. \& Solecki, A. (1975). Rep. Math. Phys. 7, 363-394.
Stokes, H. T. \& Hatch, D. M. (1984). Phys. Rev. B, 30, 49624967.

Stokes, H. T. \& Hatch, D. M. (1985). Phys. Rev. B, 31, 74627464.

Tolédano, J. C., Michel, L., Tolédano, P. \& Brezin, E. (1985). Phys. Rev. B, 31, 7171-7196.

Tolédano, J. C. \& Tolédano, P. (1980). Phys. Rev. B, 21, 1139-1172.

Estimation of Quartet Phase Sums from a New Joint Probability Distribution of Normalized Structure Factors

By Rene Peschar and Henk Schenk
Laboratory of Crystallography, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

(Received 14 January 1986; accepted 20 June 1986)

Abstract

A new joint probability distribution of normalized structure factors is derived for equal-atom structures in space group $P 1$. From this general distribution, a series expansion, the conditional joint probability distribution of the quartet phase sum is obtained, when restrictive conditions among the reciprocal vectors are imposed. The main difference from existing quartet distributions is the possibility of enclosing higher-order terms to any given order of N, although an approximation employed in the derivation limits the number of them considerably. The higher-order terms present are easily employed in the series since the determination of their explicit appearance has been automated: a computer program derives the terms up to a desired order and stores them in a coded form. In general, the incorporation of selective terms up to order N^{-3} appears to yield sufficient convergence. Only high $|E|$ values or a low N value may necessitate the use of higher-order terms. Test results show that, in contrast to results from the quartet distributions of Hauptman and Giacovazzo, systematic estimation errors are hardly present, while absolute estimation errors are reduced as well.

1. Introduction

Results of Simerska (1956) and Hauptman \& Karle (1953) indicated that the four-phase structure invariant ψ_{4},

$$
\begin{equation*}
\psi_{4}=\varphi_{H_{1}}+\varphi_{H_{2}}+\varphi_{H_{3}}-\varphi_{H_{1}+H_{2}+H_{3}} \tag{1}
\end{equation*}
$$

also called the quartet phase sum or simply quartet,
lies more probably near zero for larger values of

$$
\begin{equation*}
E_{4}=\left|E_{H_{1}} E_{H_{2}} E_{H_{3}} E_{H_{1}+H_{2}+H_{3}}\right| N^{-1} \tag{2}
\end{equation*}
$$

However, in general the triplet relationship

$$
\begin{equation*}
\psi_{3}=\varphi_{H_{1}}+\varphi_{H_{2}}-\varphi_{H_{1}+H_{2}} \tag{3}
\end{equation*}
$$

will be estimated more reliably because the E_{3} values, which determine the reliability of the triplet estimation, are in general larger than the E_{4} values since they depend on $N^{-1 / 2}$ only. Therefore, quartets were not used as such for practical purposes. This changed when Schenk (1973a) pointed out that quartets can also be formed by summing two triplets with one phase in common and he showed in this way that quartet (1) depends not only on $\left|E_{H_{1}}\right|,\left|E_{H_{2}}\right|,\left|E_{H_{3}}\right|$ and $\left|E_{H_{1}+H_{2}+H_{3}}\right|$ but also on the so-called cross terms $\left|E_{H_{1}+H_{2}}\right|,\left|E_{H_{1}+H_{3}}\right|$ and $\left|E_{H_{2}+H_{3}}\right|$. He argued that the larger the E_{4} and cross-term magnitudes the more probably ψ_{4} lies near zero. Another important result of the introduction of this cross-term principle was that quartets with small cross-term magnitudes could be predicted to lie near π (Schenk \& De Jong, 1973; Schenk, 1973a, b; Hauptman, 1974; Schenk, 1974). This renewed interest in quartets and the cross-term principle led to the development of improved joint probability distributions (j.p.d.'s) for estimating the quartet phase sum (Hauptman, 1975a,b, 1976; Giacovazzo, 1976a,b) and initiated the development of the neighbourhood principle (Hauptman, 1975b) and the representation theory (Giacovazzo, 1977). The latter theories identify structure factors upon which the phase sum of a structure (sem)invariant most sensitively depends.

